
Theorem (Entscheidungsproblem)

The following decision problem is undecidable:

Given: A sentence ϕ of �rst-order logic

Question: Is ϕ a tautology?

We prove that the Entscheidungsproblem is undecidable by a

reduction from the undecidability of the Halting problem for

Turing machines
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Turing machine

A Turing machine over alphabet A is a tuple M = 〈∆,Q, δ, q0, qf 〉,
where:

∆ is a �nite alphabet, contains A and contains symbol � 6∈ A

(blank);

Q is a �nite set of states;

q0 ∈ Q is an initial state;

qf ∈ Q is a �nal or accepting state;

δ : (Q − {qf })×∆→ ∆× Q × {−1, 0,+1} is a
transition function.
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We utilize the following version of the halting problem:

Given: (An encoding of) a Turing machine M

Question: Does M halt on the empty word?
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Let ϑ be the conjunction of the following:

∀y¬P(y , c)

∀x∃yP(x , y)

∀x∀y(P(x , y)→ R(x , y))

∀x∀y∀z(R(x , y)→ (R(y , z)→ R(x , z)))

∀x¬R(x , x)

ϑ is satis�able, and every model A of ϑ contains an in�nite

sequence of distinct elements cA = a0, a1, a2, . . ., satisfying
(ai , ai+1) ∈ PA for each i
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Our goal � a construction to turn a Turing machine M into a

sentence ϕM such that:

M accpets ε i� ϕM is a tautology

It is easier to construct a sentence ψM such that

M loops forever on ε i� ψM is satis�able

and take ϕM to be ¬ψM
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Signature:

Unary relation symbols Sq for all states q ∈ Q;

Binary relation symbols Ca for all letters a ∈ ∆;

Binary relatoin symbol G ;

constant symbol c and relation symbols P and R from ϑ



Signature:

Unary relation symbols Sq for all states q ∈ Q;

Binary relation symbols Ca for all letters a ∈ ∆;

Binary relatoin symbol G ;

constant symbol c and relation symbols P and R from ϑ



Signature:

Unary relation symbols Sq for all states q ∈ Q;

Binary relation symbols Ca for all letters a ∈ ∆;

Binary relatoin symbol G ;

constant symbol c and relation symbols P and R from ϑ



Signature:

Unary relation symbols Sq for all states q ∈ Q;

Binary relation symbols Ca for all letters a ∈ ∆;

Binary relatoin symbol G ;

constant symbol c and relation symbols P and R from ϑ



Signature:

Unary relation symbols Sq for all states q ∈ Q;

Binary relation symbols Ca for all letters a ∈ ∆;

Binary relatoin symbol G ;

constant symbol c and relation symbols P and R from ϑ



The formula Sq(x) is read: after x steps of computation the

machine is in state q.

The formula G (x , y) is read: after x steps of computation the

head occupies position y .

The formula Ca(x , y) is read: after x steps of computation

symbol a is in cell y
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1 ϑ

2 Sq0(c) ∧ G (c, c) ∧ ∀x CB(c , x);

3 ∀x(
∨

q∈Q Sq(x));

4 ∀x(Sq(x)→ ¬Sp(x)), dla q, p ∈ Q, q 6= p;

5 ∀x∀y(
∨

a∈∆ Ca(x , y));

6 ∀x∀y(Ca(x , y)→ ¬Cb(x , y)), dla a, b ∈ ∆, a 6= b;

7 ∀x∃y G (x , y);

8 ∀x∀y∀z(G (x , y) ∧ G (x , z)→ y = z);



9 ∀x∀y∀z(Sq(x) ∧ G (x , y) ∧ Ca(x , y) ∧ P(x , z)→
Sp(z) ∧ Cb(z , y)), for δ(q, a) = (p, b, i);

10 ∀x∀y∀z(¬G (x , y) ∧ Ca(x , y) ∧ P(x , z)→ Ca(z , y));

11 ∀x∀y∀z∀v(Sq(x) ∧ G (x , y) ∧ Ca(x , y) ∧ P(x , z) ∧ P(y , v)→
G (z , v)), for δ(q, a) = (p, b,+1);

12 ∀x∀y∀z(Sq(x) ∧ G (x , y) ∧ Ca(x , y) ∧ P(x , z) ∧ Ca(x , y)→
G (z , y)), for δ(q, a) = (p, b, 0);

13 ∀x∀y∀z∀v(y 6= c →
(Sq(x) ∧ G (x , y) ∧ Ca(x , y) ∧ P(x , z) ∧ P(v , y)→ G (z , v))),
for δ(q, a) = (p, b,−1);

14 ∀x∀y∀z∀v(Sq(x) ∧ G (x , c) ∧ Ca(x , y) ∧ P(x , z)→ G (z , c)),
for δ(q, a) = (p, b,−1);

15 ∀x¬Sqf
(x).


