
Limitations of Expressive Power of First-Order
Logic

In this lecture we assume that there are no function symbols in the
signature



Quanti�er rank of a formula

QR(ϕ) is de�ned as follows:

QR(⊥) = QR(t1 = t2) = QR(r(t1, . . . , tn)) = 0 for terms
t1, . . . , tn and r ∈ ΣR

n .

QR(ϕ→ ψ) = max(QR(ϕ),QR(ψ)).

QR(∀xϕ) = 1 + QR(ϕ).

Informally: QR is the nesting depth of quanti�ers in the formula
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Induced substructure

Let A be a relational structure
Let ∅ 6= B ⊆ A.

Then A|B is a structure over the signature Σ of A:

the universe of A|B is B

for r ∈ ΣR
n we de�ne rA|B := rA ∩ Bn.
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Partial isomorphism

A,B � relational structures over Σ.
Nonempty subsets A′ ⊆ A and B ′ ⊆ B .

An isomorphism h : A|A′ ∼= B|B′ of induced substructures is called a
partial isomorphism from A to B.
Its domain is dom(h) = A′, and range is rg(h) = B ′.
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Partial isomorphisms cntd

We adopt the convention that ∅ is a partial isomorphism from A to
B with empty domain and range.

For two partial isomorphisms g , h from A to B we write g ⊆ h

when dom(g) ⊆ dom(h) and g(a) = h(a) for all a ∈ dom(g);
alternatively, when g is included in h as a set.
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m-isomorphism

Let m ∈ N.

Structures A and B are m-isomorphic (dentoed A ∼=m B), if there
exists a family {In | n ≤ m} such that:

Iso Each In is a nonempty set of partial isomorphisms
from A to B

Back For each h ∈ In+1 and each b ∈ B there exists g ∈ In
such that h ⊆ g and b ∈ rg(g).

Forth For each h ∈ In+1 and each a ∈ A there esxists g ∈ In
such that h ⊆ g and a ∈ dom(g).

The family {In | n ≤ m} is called an m-isomorphism of A and B,
denoted {In | n ≤ m} : A ∼=m B.
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Finite isomorphism

Two structures A, B are �nitely isomorphic, (denoted A ∼=�n B) if
there exists a family {In | n ∈ N}, whose each subfamily
{In | n ≤ m} is an m-isomorphism.

If {In | n ≤ m} has the above property, we write
{In | n ≤ N} : A ∼=�n B
This family is called a �nite isomorphism.
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Proof: See blackboard.



Elementary equivalence

Repetitio est mater studiorum

A and B are elementary equivalent (denoted A ≡ B), if for each
sentence ϕ of �rst-order logic
A |= ϕ i� B |= ϕ.

A and B are m-elementary equivalent (denoted A ≡m B), if for
each sentence ϕ of quanti�er rank at most m holds
A |= ϕ i� B |= ϕ.
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Elementary equivalence cntd

Fact
A ∼=�n B if and only if for every natural m holds A ∼=m B.

Proof:
Suppose that for each m there exists {Imn | n ≤ m} as in the
de�nition of ∼=m .
The family {Jn | n ∈ N} de�ned by

Jn =
⋃
m∈N

Imn

satis�es the de�nition of ∼=�n .



Elementary equivalence cntd

Fact
A ∼=�n B if and only if for every natural m holds A ∼=m B.
Proof:
Suppose that for each m there exists {Imn | n ≤ m} as in the
de�nition of ∼=m .
The family {Jn | n ∈ N} de�ned by

Jn =
⋃
m∈N

Imn

satis�es the de�nition of ∼=�n .



Fraïssé's characterization

Theorem [Fraïssé]
Let Σ by a �nite relational signature;
Let A,B be structures over Σ.

For each m ∈ N:
A ∼=m B if and only if A ≡m B.

A ∼=�n B if and only if A ≡ B.
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Proof of Fraïssé's Theorem

The second equivalence follows from the �rst one.
We prove the �rst one from left to right. We �x m ∈ N .
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Induction thesis

Let

{In | n ≤ m} : A ∼=m B

g ∈ In

ϕ be a formula

FV (ϕ) = x1, . . . , xr
QR(ϕ) ≤ n ≤ m

The for each a1, . . . , ar ∈ dom(g) the following are equivalent:

A, x1 : a1, . . . , xr : ar |= ϕ

B, x1 : g(a1), . . . , xr : g(ar ) |= ϕ.



Induction thesis

Let

{In | n ≤ m} : A ∼=m B

g ∈ In

ϕ be a formula

FV (ϕ) = x1, . . . , xr
QR(ϕ) ≤ n ≤ m

The for each a1, . . . , ar ∈ dom(g) the following are equivalent:

A, x1 : a1, . . . , xr : ar |= ϕ

B, x1 : g(a1), . . . , xr : g(ar ) |= ϕ.



Induction thesis

Let

{In | n ≤ m} : A ∼=m B

g ∈ In

ϕ be a formula

FV (ϕ) = x1, . . . , xr
QR(ϕ) ≤ n ≤ m

The for each a1, . . . , ar ∈ dom(g) the following are equivalent:

A, x1 : a1, . . . , xr : ar |= ϕ

B, x1 : g(a1), . . . , xr : g(ar ) |= ϕ.



Induction thesis

Let

{In | n ≤ m} : A ∼=m B

g ∈ In

ϕ be a formula

FV (ϕ) = x1, . . . , xr
QR(ϕ) ≤ n ≤ m

The for each a1, . . . , ar ∈ dom(g) the following are equivalent:

A, x1 : a1, . . . , xr : ar |= ϕ

B, x1 : g(a1), . . . , xr : g(ar ) |= ϕ.



Induction thesis

Let

{In | n ≤ m} : A ∼=m B

g ∈ In

ϕ be a formula

FV (ϕ) = x1, . . . , xr
QR(ϕ) ≤ n ≤ m

The for each a1, . . . , ar ∈ dom(g) the following are equivalent:

A, x1 : a1, . . . , xr : ar |= ϕ

B, x1 : g(a1), . . . , xr : g(ar ) |= ϕ.



Induction thesis

Let

{In | n ≤ m} : A ∼=m B

g ∈ In

ϕ be a formula

FV (ϕ) = x1, . . . , xr
QR(ϕ) ≤ n ≤ m

The for each a1, . . . , ar ∈ dom(g) the following are equivalent:

A, x1 : a1, . . . , xr : ar |= ϕ

B, x1 : g(a1), . . . , xr : g(ar ) |= ϕ.



Induction

For atomic formula sthe thesis follows from the fact that g is a
partial isomorphism

If ϕ is ψ → ξ, then the following are equivalent:

A, x1 : a1, . . . , xr : ar |= ψ → ξ
A, x1 : a1, . . . , xr : ar 6|= ψ or
A, x1 : a1, . . . , xr : ar |= ξ
B, x1 : g(a1), . . . , xr : g(ar ) 6|= ψ or
B, x1 : g(a1), . . . , xr : g(ar ) |= ξ
B, x1 : g(a1), . . . , xr : g(ar ) |= ψ → ξ
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Induction cntd

Let ϕ be ∀xr+1ψ

By assumption QR(ϕ) ≤ n we get QR(ψ) ≤ n − 1.

The following are equivalent:

(A, x1 : a1, . . . , xr : ar ) |= ϕ
For all a ∈ A holds (A, x1 : a1, . . . , xr : ar , xr+1 : a) |= ψ
For all a ∈ A there exists h ∈ In−1 so that g ⊆ h, a ∈ dom(h)
and
(A, x1 : a1, . . . , xr : ar , xr+1 : a) |= ψ
For all a ∈ A there exists h ∈ In−1 so that g ⊆ h, a ∈ dom(h)
and
(B, x1 : g(a1), . . . , xr : g(ar ), xr+1 : h(a)) |= ψ
For all b ∈ B there exists h ∈ In−1 so that g ⊆ h, b ∈ rg(h)
and
(B, x1 : g(a1), . . . , xr : g(ar ), xr+1 : b) |= ψ
For all b ∈ B holds (B, x1 : g(a1), . . . , xr : g(ar ), xr+1 : b) |= ψ
(B, x1 : g(a1), . . . , xr : g(ar )) |= ϕ.
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An example of application

Fakt
If A,B are two �nite linear orders of cardinalities > 2m, then
A ≡m B.



Proof

Without loss of generality let

A = {0, . . . ,N},
B = {0, . . . ,M},
2m < N ≤ M.

Wykazujemy, »e A ∼=m B.
For k ≤ m we de�ne �distance� dk between elements by

dk(a, b) =

{
|b − a| if |b − a| < 2k

∞ otherwise

Now see blackboard.
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Ehrenfeuchta Game

Σ � relational signature
A,B � structures over Σ, additionally A ∩ B = ∅.

The Ehrenfeuchta Game Gm(A,B) is played by two players: I and II
(Spoiler and Duplicator, Adam and Eve, Samson and Delilah, . . . )
The game lasts for m rounds
In the i-th round (i = 1, . . . ,m) the players make their moves:

Player I chooses:

one of the structures
an element of its universe (denoted ai if from A, bi if from B)

Player II chooses

teh other structure
an element of its universe (denoted ai if from A, bi if from B)
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And the winner is. . .

In the m rounds the chosen elements are a1, . . . , am ∈ A and
b1, . . . , bm ∈ B.

Player II wins if the mapping

h = {〈ai , bi 〉 | i = 1, . . . ,m}

is a partial isomorphism from A to B.
Oterwise Player I wins.

Player II has a winning strategy in Gm(A,B), if he/she can win any
play, irrespectively of the moves of Player I.
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Theorem [Ehrenfeucht]

Player II has a winning strategy in Gm(A,B) if and only if
A ∼=m B.

Player II has a winning strategy in Gm(A,B) for each m if and
only if A ∼=�n B.
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Game application example (easy)

The following graphs can be distinguished by a sentence of
quanti�e rrank 4, but rank 3 is not su�cient.

* * * * * * *

| | | | | | |

*-*-* *-*-* *-*-* *-*-* *-*-* *-*-* *-*-*

| | | | | | |

* * * * * * *
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Game application example (harder)

Theorem If A = 〈A,≤A〉 and B = 〈B,≤B〉 are both

liear orders

dense

without maximal and minimal elements

then

A ≡ B.

Proof: See blackboard
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Corollary

〈R,≤〉 ≡ 〈Q,≤〉.

There is no sentence of �rst-order logic which distinguishes
continuous linear orders from noncontinuous ones
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Theories compolete theories

Theory is a set of sentences closed under semantical consequence,
i.e., set ∆ such that ∆ |= ϕ holds only when ϕ ∈ ∆.
Examples of theoreis:

{ϕ | Γ |= ϕ}, called an axioomatic theory with axioms Γ

Th(K) = {ϕ | A |= ϕ, dla ka»dego A ∈ K} (theorey of a class
K of structures)

Th(A) = {ϕ | A |= ϕ} (theory of a model A).
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Complete theories

A theory ∆ is called complete, if for every sentence ϕ, exactly on of
ϕ and ¬ϕ belongs to ∆.

Theorey of a model is always complete, axiomatic theories and
theories of classses of structure may, but not need be complete.

Corollary (of the last theorem) Theore of the class A of all
dense linear orders without maximum and minimum is complete
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